Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Terrestrial hydrological and nutrient cycles are subjected to major disturbances by agricultural operations and urbanization that profoundly influence freshwater resources. Non‐point source pollution is one of the primary causes for water quality deterioration, and thus an emerging imperative in limnology is establishing empirical models that connect watershed attributes and hydrological drivers with lake nutrient dynamics. Here, we compiled three nation‐wide nutrient, meteorological, and watershed‐landscape data sets, to develop Generalized Linear Models that predict lake phosphorus and nitrogen concentrations as a function of the surrounding watershed characteristics within various hydrological distances across 104 Chinese lakes and reservoirs. Our national‐scale investigation revealed that lake nutrient concentrations can be satisfactorily predicted by proxies of natural drivers and anthropogenic activities, reflecting the properties of the surrounding watershed. Counter to previous studies, we found that China's lake nutrient concentrations strongly depend on watershed characteristics within a hydrological distance of less than 45 km rather than the entire watershed. Furthermore, extensive human activities in watersheds not only compromise our predictive capacity, but also increase the hydrological distance that is relevant to predict lake nutrients. This national‐scale characterization can inform one of the most contentious issues in the context of China's lake management, that is, the determination of the extent of the nearshore area, where nutrient control should be prioritized. As far as we know, our study represents the first attempt to apply the concept of hydrological distance and establish statistical models that can delineate the critical spatial domain primarily responsible for the nutrient conditions along the watershed‐lake continuum.more » « less
-
Abstract Sustainable management of lakes requires us to overcome ecological, economic, and social challenges. These challenges can be addressed by focusing on achieving ecological improvement within a multifaceted, co‐beneficial context. In‐lake restoration measures may promote more rapid ecosystem responses than is feasible with catchment measures alone, even if multiple interventions are needed. In particular, we identify restoration methods that support the overarching societal target of a circular economy through the use of nutrients, sediments, or biomass that are removed from a lake, in agriculture, as food, or for biogas production. In this emerging field of sustainable restoration techniques, we show examples, discuss benefits and pitfalls, and flag areas for further research and development. Each lake should be assessed individually to ensure that restoration approaches will effectively address lake‐specific problems, do not harm the target lake or downstream ecosystems, are cost‐effective, promote delivery of valuable ecosystem services, minimize conflicts in public interests, and eliminate the necessity for repeated interventions. Achieving optimal, sustainable results from lake restoration relies on multidisciplinary research and close interactions between environmental, social, political, and economic sectors. This article is categorized under:Science of Water > Water QualityWater and Life > Stresses and Pressures on EcosystemsWater and Life > Conservation, Management, and Awarenessmore » « less
An official website of the United States government
